Mathematics reminders for deep learning

Part 2: Differential Calculus

Georges Quénot
Multimedia Information Modeling and Retrieval Group

Differential of a function scalar input and scalar output

- $f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow f(x)$ f is differentiable
- $y=f(x)$
- $f(x+h)=f(x)+f^{\prime}(x) h+o(h) \quad\left(\lim _{h \rightarrow 0} \frac{o(h)}{h}=0\right)$
- $d y=f^{\prime}(x) d x \quad$ i.e: f is "locally linear"
- $\frac{d y}{d x} \equiv f^{\prime}(x)$
(notation)
- $d y=\frac{d y}{d x} d x$
("local scale factor")
- All values are scalar

Differential of a composed function scalar input and scalar output

- $f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow f(x)$
f is differentiable
- $y=f(x)$
- $g: \mathbb{R} \rightarrow \mathbb{R}: y \rightarrow g(y)$

g is differentiable

- $z=g(y)$
- $(g \circ f)^{\prime}(x)=\left(g^{\prime} \circ f\right)(x) \cdot f^{\prime}(x)=g^{\prime}(y) \cdot f^{\prime}(x)$
- $d y=\frac{d y}{d x} d x \quad d z=\frac{d z}{d y} d y$
- $d z=\frac{d z}{d y} \cdot \frac{d y}{d x} d x \quad \frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$

Differential of a function of a vector vector input and scalar output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}: x \rightarrow f(x)$
- $y=f(x)$ f is differentiable
- $f(x+h)=f(x)+\operatorname{grad} f(x) . h+o(\|h\|)$
- $d y=\operatorname{grad} f(x) \cdot d x=\sum_{i=1}^{i=n} \frac{\partial f}{\partial x_{i}}(x) \cdot d x_{i}=\sum_{i=1}^{i=n} \frac{\partial y}{\partial x_{i}} \cdot d x_{i}=\frac{\partial y}{\partial x} \cdot d x$
- $\frac{\partial y}{\partial x} \equiv \frac{\partial f}{\partial x}(x)=\operatorname{grad} f(x) \quad \frac{\partial y}{\partial x_{i}} \equiv \frac{\partial f}{\partial x_{i}}(x)$
(notations)
- $y, d y$ and $f(x)$ are scalars;
- $x, d x$ and h are "regular" (column) vectors;
- $\frac{\partial y}{\partial x}$ is a transpose (row) vector.

Differential of a vector function of a vector vector input and vector output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow f(x)$ f is differentiable
- $y=f(x) \quad x=\left(x_{i}\right)_{(1 \leq i \leq N)} \quad y=\left(y_{j}\right)_{(1 \leq j \leq P)} \quad f=\left(f_{j}\right)_{(1 \leq j \leq P)}$
- $f(x)-f(x+h)=\operatorname{grad} f(x) \cdot h+o(\|h\|)$
- $d y=\operatorname{grad} f(x) \cdot d x=\frac{\partial f}{\partial x}(x) \cdot d x=\frac{\partial y}{\partial x} \cdot d x \quad$ (locally linear)
- $d y_{j}=\sum_{i=1}^{i=n} \frac{\partial f_{j}}{\partial x_{i}}(x) \cdot d x_{i}=\sum_{i=1}^{i=n} \frac{\partial y_{j}}{\partial x_{i}} \cdot d x_{i}$
- $x, d x, y, d y, f(x)$ and h are all "regular" vectors;
- $\frac{\partial y}{\partial x}$ is a matrix (Jacobian of $f: J_{i j}=\left(\frac{\partial y}{\partial x}\right)_{i j}=\frac{\partial y_{j}}{\partial x_{i}}=\frac{\partial f_{j}}{\partial x_{i}}(x)$).

Differential of a composed function vector inputs and vector outputs

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow y=f(x)$
- $g: \mathbb{R}^{P} \rightarrow \mathbb{R}^{Q}: y \rightarrow z=g(y)$
- $x=\left(x_{i}\right)_{(1 \leq i \leq N)} \quad y=\left(y_{j}\right)_{(1 \leq j \leq P)}$
- $d z=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \cdot d x$
- $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \quad$ (matrix multiplication: non commutative!)
- $x, d x, y, d y, z, d z, f(x)$ and $g(y)$ are all regular vectors;
- $\frac{\partial y}{\partial x}, \frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial x}$ are all matrices (f, g and $g o f$ Jacobians).

Differential of a composed function vector inputs and scalar output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow y=f(x)$
- $g: \mathbb{R}^{P} \rightarrow \mathbb{R} \quad: y \rightarrow z=g(y)$
- $x=\left(x_{i}\right)_{(1 \leq i \leq N)}$

$$
y=\left(y_{j}\right)_{(1 \leq j \leq P)}
$$

(left row vector \times matrix mult. \rightarrow row vector)

- $z, d z$ and $g(y)$ are scalars;
- $x, d x, y, d y$, and $f(x)$ are regular vectors;
- $\frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial x}$ are transpose (row) vectors (f and gof gradients);
- $\frac{\partial y}{\partial x}$ is a matrix (f Jacobian).

