### **Mathematics reminders for deep learning**

#### **Part 2: Differential Calculus**

### Georges Quénot

#### Multimedia Information Modeling and Retrieval Group





Georges Quénot

Mathematics Reminders – Part 2

February 2020

# Differential of a function scalar input and scalar output

- $f : \mathbb{R} \to \mathbb{R} : x \to f(x)$  f is differentiable
- y = f(x)
- f(x+h) = f(x) + f'(x)h + o(h)  $(\lim_{h \to 0} \frac{o(h)}{h} = 0)$
- dy = f'(x)dx i.e: *f* is "locally linear"
- $\frac{dy}{dx} \equiv f'(x)$  (notation)
- $dy = \frac{dy}{dx} dx$  ("local scale factor")
- All values are scalar

Georges Quénot

Mathematics Reminders – Part 2

### Differential of a composed function scalar input and scalar output

- $f : \mathbb{R} \to \mathbb{R} : x \to f(x)$  f is differentiable
- y = f(x)
- $g: \mathbb{R} \to \mathbb{R}: y \to g(y)$

g is differentiable

- z = g(y)
- $(g \circ f)'(x) = (g' \circ f)(x) \cdot f'(x) = g'(y) \cdot f'(x)$

• 
$$dy = \frac{dy}{dx}dx$$
  $dz = \frac{dz}{dy}dy$   
•  $dz = \frac{dz}{dy} \cdot \frac{dy}{dx}dx$   $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$ 

Georges Quénot

Mathematics Reminders – Part 2

February 2020

# Differential of a function of a vector vector input and scalar output

- $f : \mathbb{R}^N \to \mathbb{R} : x \to f(x)$  f is differentiable
- y = f(x)  $x = (x_i)_{(1 \le i \le N)}$
- $f(x+h) = f(x) + \text{grad} f(x) \cdot h + o(||h||)$
- $dy = \operatorname{grad} f(x) dx = \sum_{i=1}^{i=n} \frac{\partial f}{\partial x_i}(x) dx_i = \sum_{i=1}^{i=n} \frac{\partial y}{\partial x_i} dx_i = \frac{\partial y}{\partial x} dx_i$

• 
$$\frac{\partial y}{\partial x} \equiv \frac{\partial f}{\partial x}(x) = \operatorname{grad} f(x)$$
  $\frac{\partial y}{\partial x_i} \equiv \frac{\partial f}{\partial x_i}(x)$  (notations)

- y, dy and f(x) are scalars;
- x, dx and h are "regular" (column) vectors;

   <sup>∂y</sup>/<sub>∂x</sub> is a transpose (row) vector.

Georges Quénot

Mathematics Reminders – Part 2

## Differential of a vector function of a vector vector input and vector output

• 
$$f: \mathbb{R}^N \to \mathbb{R}^P : x \to f(x)$$

f is differentiable

- y = f(x)  $x = (x_i)_{(1 \le i \le N)}$   $y = (y_j)_{(1 \le j \le P)}$   $f = (f_j)_{(1 \le j \le P)}$
- $f(x) f(x+h) = \operatorname{grad} f(x) \cdot h + o(||h||)$
- $dy = \operatorname{grad} f(x) dx = \frac{\partial f}{\partial x}(x) dx = \frac{\partial y}{\partial x} dx$  (locally linear)

• 
$$dy_j = \sum_{i=1}^{i=n} \frac{\partial f_j}{\partial x_i}(x) \cdot dx_i = \sum_{i=1}^{i=n} \frac{\partial y_j}{\partial x_i} \cdot dx_i$$

• x, dx, y, dy, f(x) and h are all "regular" vectors;

• 
$$\frac{\partial y}{\partial x}$$
 is a matrix (Jacobian of  $f: J_{ij} = \left(\frac{\partial y}{\partial x}\right)_{ij} = \frac{\partial y_j}{\partial x_i} = \frac{\partial f_j}{\partial x_i}(x)$ ).

Georges Quénot

Mathematics Reminders – Part 2

## Differential of a composed function vector inputs and vector outputs

• 
$$f: \mathbb{R}^N \to \mathbb{R}^P : x \to y = f(x)$$

- $g: \mathbb{R}^P \to \mathbb{R}^Q : y \to z = g(y)$
- $x = (x_i)_{(1 \le i \le N)}$   $y = (y_j)_{(1 \le j \le P)}$   $z = (z_k)_{(1 \le k \le Q)}$
- $dz = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \, dx$
- $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$  (matrix multiplication: non commutative!)
- x, dx, y, dy, z, dz, f(x) and g(y) are all regular vectors; •  $\frac{\partial y}{\partial x}, \frac{\partial z}{\partial y}$  and  $\frac{\partial z}{\partial x}$  are all matrices (f, g and gof Jacobians).

Georges Quénot

Mathematics Reminders – Part 2

f is differentiable

g is differentiable

# Differential of a composed function vector inputs and scalar output

• 
$$f: \mathbb{R}^N \to \mathbb{R}^P : x \to y = f(x)$$

- $g: \mathbb{R}^P \to \mathbb{R} : y \to z = g(y)$
- $x = (x_i)_{(1 \le i \le N)}$   $y = (y_j)_{(1 \le j \le P)}$   $z \in \mathbb{R}$
- $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$  (left row vector × matrix mult.  $\rightarrow$  row vector)
- z, dz and g(y) are scalars;
- x, dx, y, dy, and f(x) are regular vectors;
- $\frac{\partial z}{\partial y}$  and  $\frac{\partial z}{\partial x}$  are transpose (row) vectors (*f* and *gof* gradients);
- $\frac{\partial y}{\partial x}$  is a matrix (*f* Jacobian).

Georges Quénot

Mathematics Reminders – Part 2

f is differentiable

*q* is differentiable