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Introduction
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Multimedia Retrieval

• User need → retrieved documents
• Images, audio, video
• Retrieval of full documents or passages (e.g. shots)

• Search paradigms:
– Surrounding text → may be missing, inaccurate or incomplete
– Query by example → need for what you are precisely looking for
– Content based search (using keywords or concepts)                     
→ need for content-based indexing → “semantic gap problem”

– Combinations including feedback

• Need for specific interfaces
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The “semantic gap”

“... the lack of coincidence between the information that one 
can extract from the visual data and the interpretation that 
the same data have for a user in a given situation” 
[Smeulders et al., 2002].
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The “semantic gap” problem

Face
Woman
Hat
Lena
…

122 112 98 85 …

126 116 102 89 …

131 121 106 95 …

134 125 110 99 …

… … … … …

?
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“Signal” level

• Signal :
– Variable in time, in space and/or in other physical 

dimensions,
– Analog : physical phenomenon (pressure of an acoustic 

wave or distribution of light intensity) or its modeling by 
another one (electronic or chemical for example),

– Digital : same content but “discretized”
 of the value,
 of time,
 of space,
 and/or others (light frequency for example).
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“Signal” level

• Signal, examples :
– Sound (monophonic) : values sampled at 16 kHz on 16 bits 

(one temporal dimension, zero spatial dimensions),
– Still image (monochrome) : values sampled on a 2D grid on 

8 bits (zero temporal dimension, two spatial dimensions; 
the spatial sampling frequency depends upon the sensor),

– Stereo sound, color image: multiplication of the channels 
(additional dimension),

– Video (image sequence): like still image fixe but additionally 
sampled in time (24-30 Hz; one temporal dimension, two 
spatial dimensions, one chromatic dimension),

– Images 3D (scanners), 3D sequences, …
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“Signal” and “semantic” levels

• Semantics (opposed to signal) :
– “Abstract” concepts and relations,
– Symbolic representations (also signal),
– Successive levels of abstraction from the “signal / physical / 

concrete / objective” level to the “semantic / conceptual / 
symbolic / abstract / subjective” level,

– Gap between the signal and semantic levels (“red” versus 
“700-600 nm”),

– Somewhat artificial distinction,
– Intermediate levels difficult to understand,
– Search at the signal level, at the semantic level or with a 

combination of both.
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Query by example versus search
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Query BY Example (QBE)

Descriptor Descriptors

Query Documents

Correspondence function

Scores (e.g. distance or relevance)

Extraction Extraction

Ranking

Sorted list
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Content based indexing by supervised learning

Descriptors Descriptors

Training documents Test documents

Train

Model

Extraction Extraction

Predict

Scores (e.g. probability of concept presence)

Concept annotations
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Example : the QBIC system
• Query By Image Content, IBM (stopped demo) 
http://wwwqbic.almaden.ibm.com/cgi-bin/photo-demo
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Content-based search
• Aspects :

– Signal : arrays of numbers (“low level”),
– Semantic : concepts or keywords (“high level”).

• Search :
– Semantic → semantic : classical for text,
– Semantic → signal : images corresponding to a concept ?
– Signal → signal : image containing a part of another image ?
– Signal → semantic : concepts associated to an image ?

• Approaches :
– Bottom-up : signal → semantic,
– Top-down : semantic → signal,
– Combination of both.
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Document representation
• Compression : encoding and decoding
• Indexing : characterization of the contents

Documents

Compression

Representation

Decompression

Documents*

Documents

Indexing

Representation

Retrieval

Reference

JPEG
GIF
PNG
MJPEG
DV
MPEG-1
MPEG-2
MPEG-4

MPEG-7
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Problems

• Choice of a representation model,
• Indexing method and index organization,
• Choice and implementation of the search 

engine,
• Very high data volume,
• Need for manual intervention.
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Representation models
• Semantic level:

– keywords, word groups, concepts (thesaurus),
– Conceptual graphs (concepts and relations),

• Signal level:
– Feature vectors,
– Sets of interest points,

• Intermediate level:
– Transcription of the audio track,
– Sets of key frames,
– Mixed and structured representations, levels of detail,
– Application domain specificities,

• Standards (MPEG 7).
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Indexing methods and 
index organization

• Build representations from document contents,
• Extract features for each document or document part:

– Signal level: automatic processing,
– Semantic level : more complex, manual to automatic.

• Globally organize the features fo the search:
– Sort, classify, weight, tabulate, format, …

• Application domain specificities,
• Problem of the quality versus cost compromise.
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Choice and implementation 
of the search engine

• Search for the “best correspondence” between a query 
and the documents,

• Semantic → semantic:
– Logical, vector space and probabilistic models,
– Keywords, word groups, concepts, conceptual graphs, …

• Signal → signal :
– Color, texture, points of interest, …
– Images, imagettes, pieces of image, sketches, …

• Semantic → signal :
– Correspondence evaluated during the indexing phase (in general).

• Search with mixed queries.
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Descriptors
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Descriptors
• Engineered descriptors

– Color
– Texture
– Shape
– Points of interest
– Motion
– Semantic
– Local versus global
– …

• Learned descriptors
– Deep learning
– Auto encoders
– …



22

Histograms - general form
• A fixed set of disjoint categories (or bins), numbered from 

1 to K.
• A set of observations that fall into these categories
• The histogram is the vector of K values h[k] with h[k] 

corresponding to the number of observations that fell into 
the category k.

• By default, the h[k] are integer values but they can also 
be turned into real numbers and normalized so that the h
vector length is equal to 1 considering either the L1 or L2
norm

• Histograms can be computed for several sets of 
observations using the same set of categories producing 
one vector of values for each input set
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Histograms – text example

• A vector of term frequencies (tf) is an histogram
• The categories are the index terms
• The observations are the terms in the documents that are 

also in the index
• A tf.idf representation corresponds to a weighting of the 

bins, less relevant in multimedia since histograms bins 
are more symmetrical by construction (e.g. built by K-
means partitioning)
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Image intensity histogram

• The set of categories are the possible intensity values 
with 8-bit coding, ranging from 0 (black) to 255 (white) or 
ranges of these intensity values

256-bin 16-bin64-bin
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Image color histogram

• The set of categories are ranges of possible color values
• A common choice is a per component decomposition 

resulting in a set of parallelepipeds

• Any color space can be chosen (YUV, HSV, LAB …)
• Any number of bins can be chosen for each dimension
• The partition does not need to be in parallelepipeds

5×5×5-bin 
125-bin

3×3×3-bin 
27-bin

4×4×4-bin 
64-bin

R

G

B
Representations with the parallelepipeds’ center colors:
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Image color histogram
• The set of categories are ranges of possible color values

5×5×5-bin 
125-bin

3×3×3-bin 
27-bin

4×4×4-bin 
64-bin
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Image histograms
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Image histograms
• Can be computed on the whole image,
• Can be computed by blocks:

–One (mono or multidimensional) histogram 
per image block,

–The descriptor is the concatenation of the 
histograms of the different blocks.

–Typically : 4×4 complementary blocks but 
non symmetrical and/or non complementary 
choices are also possible. For instance: 
2×2 + 1×3 + 1×1

• Size problem → only a few bins per dimension or a lot 
of bins in total



29

Fuzzy histograms

• Objective: smooth the quantization effect 
associated to the large size of bins (typically       
4×4×4 for RGB).

• Principle: split the accumulated value into two 
adjacent bins according to the distance to the bin 
centers.



30

Color spaces

• Linear:
– RGB: Red, green, blue
– YUV: Luminance, chrominance (L – red, L – blue)

• Non linear:
– HSV: Hue, Saturation, Value
– LAB: Luminance, “blue – yellow”, “green – red”
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Correlograms
• Parallelepipeds/bins are taken in the Cartesian product 

of the color space by itself : six components 
H(r1,g1,b1,r2,g2,b2) (or only four components if the 
color space is projected on only two dimensions: 
H(u1,v1,u2,v2)).

• Bi-color values are taken according to a distribution of 
the image point couples:

– At a given distance one from the other,
– And/or in one or more given direction.

• Allows for representing relative spatial relationships 
between colors,

• Large data volumes and computations
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Color moments
• Moments (color distribution global statistics)

–Means
–Covariances
–Third order moments
–Can be combined with image coordinates
–Fast and easy to compute and compact 

representation but not very accurate
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Color moments
• Means:                       

mR = (ΣR)/N,    mG = (ΣG)/N,   mB = (ΣB)/N)
• Means + variances: + covariances:   

mRR = (Σ(R-mR)2)/N,   mGB = (Σ(G-mG)(B-mB))/N,   
…

• Higher order moments: 
mRGB = (Σ(R-mR)(G-mG)(B-mB))/N, mRRR, 
mRGG, …

• Moments associated to spatial components :         
mRX = (Σ(R-mR)(X-mX))/N,   mRGX,  mBXY,  …
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Image normalization
• Objective : to become more robust against illumination 

changes before extracting the descriptors.
• Gain and offset normalization: enforce a mean and a 

variance value by applying the same affine transform to 
all the color components, non-linear variants.

• Histogram equalization: enforce an as flat as possible 
histogram for the luminance component by applying the 
same increasing and continuous function to all the color 
components.

• Color normalization: enforce a normalization which is 
similar to the one performed by the human visual: 
“global” and highly non linear.
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Correspondence functions for color
• Vectors of moments:

– Euclidean distance : search for exact similarity,
– Angle between vectors : search for similarity with robustness to 

illumination changes,
• Histograms:

– Euclidean or χ2 distance: search for exact similarity,
– Robustness to illumination changes can only be obtained by an 

intensity normalization pre-processing,
– Earth-mover distance: compute the cost for transforming one 

histogram into another by giving a flat penalty for passing from 
one bin to another

– Histograms by blocks : sum of the smaller block to block 
distances only (typically 8 out of 16): permits a search with only a 
portion of an image,

• Correlograms:
– Euclidean or χ2 distance, with or without intensity normalization.
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Texture descriptors
• Computed on the luminance component only
• Rather fuzzy concept,
• Frequential composition or local variability,
• Fourier transforms,
• Gabor filters,
• Neuronal filters,
• Cooccurrence matrices,
• Many possible combination,
• Feature vector,
• Associated correspondence functions,
• Normalization possible.
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1D discrete convolution

Mathematical definition:

• 𝑓𝑓 and 𝑔𝑔 : functions from ℤ to ℝ (or to ℂ) 

• Infinite sums must be convergent

• In practice: 𝑓𝑓 and 𝑔𝑔 are defined on bounded 
regions → padding (usually with zeroes) →
“side effects”

𝑓𝑓 ∗ 𝑔𝑔 𝑛𝑛 = �
𝑚𝑚∈ℤ

𝑓𝑓 𝑚𝑚 𝑔𝑔(𝑛𝑛 −𝑚𝑚) = �
𝑚𝑚∈ℤ

𝑓𝑓 𝑛𝑛 −𝑚𝑚 𝑔𝑔(𝑚𝑚)
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1D discrete convolution
Signal processing: 

• Application of a 1D convolution kernel 𝐾𝐾 to a 1D input 
signal 𝐼𝐼 for producing an output signal 𝑂𝑂 = 𝐾𝐾 ∗ 𝐼𝐼 with 
𝑂𝑂 𝑛𝑛 = ∑𝑚𝑚∈𝑊𝑊𝐾𝐾 𝑚𝑚 𝐼𝐼(𝑛𝑛 −𝑚𝑚)

• m : within a finite (and usually centered) window 𝑊𝑊
around the current location (𝑛𝑛)

• Properties: linear (relatively to 𝐼𝐼), “local” and translation 
invariant

• The convolution product is commutative and associative: 
the sequential application of several kernels is the same 
as a single application of their product
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1D discrete convolution

𝑚𝑚

𝐾𝐾

(+1,0,−1)

𝐼𝐼 3 4 5 6 7 8

2 −1 3

𝑛𝑛
(0,1,2,3,4,5)

Signal processing: 

• Application of a1D convolution kernel 𝐾𝐾 to a 
1D input signal 𝐼𝐼
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1D discrete convolution

0

𝑛𝑛 − 𝑚𝑚

𝑛𝑛 = 2

𝐾𝐾

00…

00

00

00… …

…

00… 00 …

00 …00…

𝐼𝐼

𝑂𝑂 ? ? 21 ? ? ?

8 −5 18

0 3 4 5 6 7 8

2 −1 3

Element-wise product

Sum over 𝑚𝑚
𝐾𝐾 𝑚𝑚 𝐼𝐼(𝑛𝑛 −𝑚𝑚)

𝑚𝑚
(+1,0,−1)
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1D discrete convolution

0

𝑛𝑛 − 𝑚𝑚

𝑛𝑛 = 3

𝐾𝐾

00…

00

00

00… …

…

00… 00 …

00 …00…

𝐼𝐼

𝑂𝑂 ? ? 21 25 ? ?

10 −6 21

0 3 4 5 6 7 8

2 −1 3

Element-wise product

Sum over 𝑚𝑚
𝐾𝐾 𝑚𝑚 𝐼𝐼(𝑛𝑛 −𝑚𝑚)

𝑚𝑚
(+1,0,−1)
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1D discrete convolution

0

𝑛𝑛 − 𝑚𝑚

𝑛𝑛 = 0

𝐾𝐾

00…

00

00

00… …

…

00… 00 …

00 …00…

𝐼𝐼

𝑂𝑂 9 ? 21 25 ? ?

0 −3 12

0 3 4 5 6 7 8

2 −1 3

Element-wise product

Sum over 𝑚𝑚
𝐾𝐾 𝑚𝑚 𝐼𝐼(𝑛𝑛 −𝑚𝑚)

𝑚𝑚
(+1,0,−1)
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1D discrete convolution

0

𝐾𝐾

00…

00

00

00… …

…

00… 00 …

𝐼𝐼

𝑂𝑂 9 17 21 25 29 6

0 3 4 5 6 7 8

2 −1 3

Side effects (zero padding)

𝑛𝑛

𝑛𝑛

𝑚𝑚
(+1,0,−1)
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1D discrete convolution

8

𝐾𝐾

00…

00

00

00… …

…

00… 00 …

𝐼𝐼

𝑂𝑂 15 17 21 25 29 30

3 3 4 5 6 7 8

2 −1 3

Side effects (continuity padding)

𝑛𝑛

𝑛𝑛

𝑚𝑚
(+1,0,−1)
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1D discrete convolution

7

𝐾𝐾

00…

00

00

00… …

…

00… 00 …

𝐼𝐼

𝑂𝑂 17 17 21 25 29 27

4 3 4 5 6 7 8

2 −1 3

Side effects (symmetry padding)

𝑛𝑛

𝑛𝑛

𝑚𝑚
(+1,0,−1)
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1D discrete convolution

𝐾𝐾

00…

00

00

00… …

…

00… 00 …

𝐼𝐼

𝑂𝑂 21 25 29

4 5 6 7 8

2 −1 3

No side effects (cropping)

𝑛𝑛

𝑛𝑛

0 03

00 17

𝑚𝑚
(+1,0,−1)
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1D discrete convolution
Examples:

• Derivative: 𝐷𝐷 𝑚𝑚 = δ 𝑚𝑚 + 1 − δ 𝑚𝑚 − 1 /2
(𝐷𝐷 𝑚𝑚 = +1 if 𝑚𝑚 = −1, −1 if 𝑚𝑚 = +1, 0 otherwise) 
i.e.: 𝑂𝑂 𝑛𝑛 = 𝐼𝐼 𝑛𝑛 + 1 − 𝐼𝐼(𝑛𝑛 − 1) /2

• Average on a sliding window (basic smoothing):
𝐴𝐴 𝑚𝑚 = 1

2𝑤𝑤+1
if 𝑚𝑚 ≤ 𝑤𝑤,  0 otherwise. 

Window size is 2𝑤𝑤 + 1.

• Gaussian smoothing:  𝐺𝐺σ 𝑚𝑚 = 1
2𝜋𝜋𝜎𝜎

𝑒𝑒−
𝑚𝑚2

2𝜎𝜎2

practical extension: 3-4σ
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1D discrete convolution
Examples (all kernels are centered):

• Derivative: 𝐷𝐷 = 1
2

×

• Sliding average: 𝐴𝐴2 = 1
5

×

• Binomial filter (discrete and bounded Gaussian filter)

𝐵𝐵𝑤𝑤 𝑚𝑚 = 𝐶𝐶2𝑤𝑤𝑚𝑚+𝑤𝑤

22𝑤𝑤
= 2𝑤𝑤 !

22𝑤𝑤 𝑤𝑤−𝑚𝑚 ! 𝑤𝑤+𝑚𝑚 !
𝜎𝜎 = 𝑤𝑤

2

𝐵𝐵1 = 1
4

×

𝐵𝐵2 = 1
16

×

𝐵𝐵3 = 1
64

×

1 0 −1

1 1 1 1 1

1 2 1

1 4 6 4 1

1 6 15 20 15 6 1
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• 𝑂𝑂 𝑖𝑖, 𝑗𝑗 = 𝐾𝐾 ∗ 𝐼𝐼 𝑖𝑖, 𝑗𝑗 = ∑ 𝑚𝑚,𝑛𝑛 𝐾𝐾 𝑚𝑚,𝑛𝑛 𝐼𝐼(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)

• m and n : within a window around the current 
location, corresponding to the filter size

• 𝐾𝐾(𝑚𝑚,𝑛𝑛) : convolution kernel, usually bounded

• Linear, “local” and translation invariant

• Side effects

2D (image) convolution
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Classical image convolution (2D to 2D)

3x3 convolution, no stride, half padding
Animation from https://github.com/vdumoulin/conv_arithmetic/
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Classical image convolution (2D to 2D)

3×3 convolution, no stride, no padding
Animation from https://github.com/vdumoulin/conv_arithmetic/
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Classical image convolution (2D to 2D)

3×3 convolution, no stride, full padding
Animation from https://github.com/vdumoulin/conv_arithmetic/
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2D discrete convolution

Examples, partial derivatives (all kernels are centered):

• ∂/∂𝑥𝑥 = 1
2

× = 1
2

×

• ∂/∂𝑦𝑦 = 1
2

× = 1
2

×

1 0 −1

0 00

0 00

0 0 0

1 00

−1 00

1 0 −1

0

1

−1
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2D discrete convolution

Examples, partial derivatives (all kernels are centered):

∗ =

∗ =

∂/∂𝑥𝑥

∂/∂𝑦𝑦

𝛁𝛁

𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐
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2D discrete convolution

Partial derivatives, smoothed versions:

• ∂/∂𝑥𝑥 = 1
2

× ∗ 1
4

× = 1
8

×

• ∂/∂𝑦𝑦 = 1
2

× ∗ 1
4

× = 1
8

×

2 0 −2

0 −11

0 −11

0 0 0

2 11

−2 −1−1

1 0 −1

0

1

−1

1 2 1

2

1

1
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2D discrete convolution

Partial derivatives, smoothed versions:

∗ =

∗ =

∂/∂𝑥𝑥

∂/∂𝑦𝑦

𝛁𝛁

𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐
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Gabor filter

• Circular Gabor filter:    

𝐺𝐺θ 𝑚𝑚,𝑛𝑛 =
1

2𝜋𝜋𝜎𝜎2
. 𝑒𝑒−

𝑚𝑚2+𝑛𝑛2
2𝜎𝜎2 . 𝑒𝑒

2𝜋𝜋𝜋𝜋𝑚𝑚.cos θ+𝑛𝑛.sin θ
λ

Gaussian:
• Locality
• Side effect
• Filter width

Wave:
• Wave length
• Orientation
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Gabor transforms

(Circular) Gabor filter of direction θ, of wavelength λ and of extension σ :

Energy of the image through this filter:

Set of convolutional (linear) transform followed by a non-linear transformation 
(module) and a global pooling (average) : specific case of CNN layer.
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“Separable” formulation:

Gabor transforms
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Linear combination coefficients:

Gabor transforms
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Simplified expressions:

Gabor transforms
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λ

θ

σ
σ

θ

λ

σ

σ

λ

θ

Elliptic: Circular:

Gabor transforms
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Filtres de Gabor
Example of elliptic filters with 8 orientations and 4 scales
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Gabor filters in Fourier space
Elliptic filters with 6 orientations and 4 scales in the 
frequential domain (Fourier space)
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• Circular: 
– scale λ, angle θ, variance σ,
– σ multiple of λ, typically : σ = 1.25 λ,

(“same number” of wavelength whatever the λ value)

• Elliptic:
– scale λ, angle θ, variances σλ and σθ,

– σλ and σθ multiples of λ, typically : σλ = 0.8 λ et σθ = 1.6 λ,

• 2 independent variables:
– scale λ : N values (typically 4 to 8) on a logarithmic scale 

(typical ratio of √2 to 2)
– angle θ : P values (typically 8),
– N.P elements in the descriptor,

Gabor transforms
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Correspondence Functions for 
Gabor transforms

• Euclidean Distance : searching for identities,
• Angle between vectors : searching for similarities 

robust to illumination changes,
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Descriptors of points of interest
• “High curvature” points or “corners”,
• Singular” points of the I[i][j] surface,
• Extracted using various filters:

– Computation of the spatial derivatives at a given scale,
– Convolution with derivatives of Gaussians,
– Harris-Laplace detector.

• Construction of invariants by an appropriate combination of 
these various derivatives,

• Each point is selected and then represented by the set of values 
of these invariants,

• The set of selected points of interest is topologically organized 
(relations between neighbor points),

• The structure is irregular and the size of the description depends 
upon the image contents,

• Descriptions are large.
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Descriptors of points of interest
• SIFT descritptor: Histogram of gradient direction:

8 bins times 4 x 4 blocks in a neighborhood of the point.
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Local versus global descriptors
• Global descriptors: single vector for a whole image
• Local descriptors: one vector for each pixel, image patch, 

image block shot 3D patch … e.g. SIFT or STIP
• Need for a single vector of fixed length far any image and 

with comparable components across images
• Aggregation of local descriptors → global descriptor
• Homogeneous with the local descriptor:

– max or average pooling
• Heterogeneous with the local descriptor:

– Histogramming according to clusters in the local descriptor space 
[Sivic, 2003][Cusrka, 2004]

– Gaussian Mixture Models (GMM)
– Fisher Vectors (FV) [Perronnin, 2006], Vectors of Locally 

Aggregated Descriptors (VLAD) [Jégou, 2010] or Tensors (VLAT) 
[Gosselin, 2011], Supervectors
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Aggregation of local descriptors

• Histogramming according to clusters in the local 
descriptor space:

– Clustering: partitioning of the descriptor space according 
to training data:

• k-means or equivalent method
• each cluster is represented by its centroid

– Mapping: associating a local descriptor to a cluster:
• getting a cluster number for each local descriptor
• number of the nearest centroid vector

– Histogramming: counting the local descriptors in each 
cluster for a given image:

• one histogram per image
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Clustering
• Given a set (xi) of N data points in a metric space
• Find a set (cj) of K centers
• Minimizing the representation square error:

• Direct search not possible
• Use heuristics for finding good local minima
• Cluster j = subset (part) of the data space which is closest 

to center cj than to any other center
• The set of clusters is a partition of the data space
• This partition is adapted to the training data
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K-means Clustering
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K-means Clustering

• K-means is relatively fast and efficient compared to 
alternate and more complex methods

• The final result depends upon the choice of the initial 
centers; it is always possible to run it many times with 
different initial conditions and select the one obtaining the 
smallest representation error

• Tends do produce clusters of comparable size
• Convergence is guaranteed but it may take a large number 

of iterations
• For practical applications, a full convergence is not 

necessary and does not make a big difference
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Hierarchical K-means Clustering
• Hierarchical K means may be faster (both for the clustering 

and the mapping) but less accurate
• The hierarchical structure of the set of clusters may be 

useful for some applications
• Two main strategies:

– Recursively split all the clusters into a (small) fixed number of sub-
clusters (e.g. recursive dichotomy) starting with a single cluster    
(→ regular n-ary tree)

– Recursively split in two parts only the biggest cluster into sub-
clusters (→ irregular binary tree)

• Hierarchical mapping: recursive search of the closest 
center from the coarsest to the finest grain.
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Correspondence functions for 
points of interest

• Generally very complex functions,
• Relaxation methods:

– Randomly choose a point in the description of the query image,
– Compare the neighborhood of this point to all the neighborhoods of all 

the points of the candidate document,
– Amongst those that are “close” in the sense of the spatial relations and 

the values of the  associated attributes, do a complementary search to 
see if the neighbor points are also “close” in the same sense,

– Propagate the correspondence between “close” points by following the 
point topologies in the query and candidate images,

– Find the best possible global correspondence respecting these 
topologies et preserving close characteristics for the in correspondence,

– Globally evaluate (quantify) the quality of the correspondence.
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• Very costly method both for representation volume and 
computation time for the correspondence function,

• But very accurate and selective,
• Allows for retrieving an image from a portion of it by 

searching for a partial correspondence,
• Can be made robust to rotations by choosing appropriate 

invariants,
• Can be made robust to scale transforms by using multi-

scale representations (even more costly)
• Usable only on small to medium image collections (~1000-

10,000 images)
• Recent progress: up to millions of images.

Correspondence functions for 
points of interest
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Correspondence functions for 
points of interest

Example of an image pair involving a large 
scale change due to the use of a zoom. 
The scale factor between the images is 6. 
The common portion represents less than 
17% of the image.
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Shape descriptors
• Extraction of shapes by image processing techniques: 

homogeneous regions obtained by iterative growing or 
segmented from motion,

• Vector representation (sequence of vector producing a 
curve, the curve may be closed or not),

• Representation by parametric curves (splines),
• Representation by frequential decomposition,
• Possible scale or rotation invariance (generally at the 

level of the correspondence function),
• Potentially several shapes in a single image.
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Parametric representations
• Continuous “functions”:

– Rayon as a function of the angle : r = f(θ),
– Curvature as a function of the curvilinear abscissa : c = f(s),

c=1/R

s

r
θ

G G
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Parametric representations
• Continuous “functions”:

– Rayon as a function of the angle : r = f(θ),
– Curvature as a function of the curvilinear abscissa : c = f(s),
– Computed from discretized contours (points on a grid),
– Periodic for closed contour.

• Fourier coefficients:

• a0 : mean radius, used for scale normalization.
• (an/a0, bn/a0)(1 ≤ n ≤ N) : descriptor of the normalized shape.

• Similarly for the curvilinear formulation.

( ) θθθ nbnaaf
n nn n sincos

110 ∑∑ >>
++=
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Correspondence functions for shapes

• Possible normalization for scale and rotation,
• Search for a piece of  curve within another curve 

(relaxation method again)
• Search for an “optimal” alignment between two vector 

representations,
• Search of invariants in the spline parameter sets 

(curvature extrema for instance),
• Search for a similar frequential composition,
• Quantitative similarity measure between shapes,
• Global similarity measure between images : average on 

the similarity measures for the best shape matches.
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Motion descriptors
• Extraction of the motion of each pixel or of the matching 

between pixels of  consecutives images,
• Statistics on these motions:

– Global average motion : rotation, translation, zoom, …
– Average and variance of the motion,
– Distribution : histogram or texture of the motion vector field,
– Segmentation of the background and et the mobile objects: 

number, size and speed of mobile objects (or evaluation of the 
possibility to detect them),

• Camera motion,
• Background structure (mosaicing, 3D scene),
• Description oh the objects (color, shape, texture).
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Correspondence function for motion

• Similar statistics,
• Similar camera motion,
• Similar background (color, shape, texture),
• Similar mobile objects (color, shape, texture),
• Euclidean distances, possibly after normalization,
• Correspondence function associated to the 

attributes used for the background and the 
segmented objects,

• Global correspondence built from the various 
correspondence between the elements.
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Use of several types of descriptors

• Several types of descriptors : choice according to 
the target application or to the query type,

• Several correspondence function for each type of 
descriptor : choice according to the target 
application or to the target query type (invariances 
that are desired or not for instance),

• Combination of the descriptions,
• Combination of the correspondence functions,
• Combination with descriptions from the semantic 

level.
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Query BY Example (QBE)

Descriptor Descriptors

Query Documents

Correspondence function

Scores (e.g. distance or relevance)

Extraction Extraction

Ranking

Sorted list
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Content based indexing by supervised learning

Descriptors Descriptors

Training documents Test documents

Train

Model

Extraction Extraction

Predict

Scores (e.g. probability of concept presence)

Concept annotations
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Common processing, single descriptor

Descriptors

Input documents

Decision

Extraction

Scores

Query,
search collection, 
training collection, 
test collection …

Color, texture,
bag of SIFTs …

Correspondence function,
train / predict

Similarity measure,
probability of presence
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Common processing, multiple descriptors, 
single decision (early fusion)

Descriptors

Input documents

Decision

Extraction

Scores

Descriptors

Extraction

Descriptors

Extraction

Fusion of descriptors (e.g. concatenation)

“Super descriptors”
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Common processing, multiple descriptors, 
multiple decision (late fusion)

Descriptors

Input documents

Decision

Extraction

Scores

Descriptors

Extraction

Descriptors

Extraction

Fusion of scores (e.g. arithmetic mean)

“Consolidated scores”

Decision

Scores

Decision

Scores



90

Fusion of representations (early)

• For all vector description (of fixed size), whatever their 
origin,

• Possibility to concatenate the various descriptors in a unique 
mixed descriptor → normalization problem,

• Possibility to reduce la dimension of the resulting vector 
(and/or of each  original vector) in order to keep only the 
most relevant information:

– Principal Component Analysis,
– Neural networks,
– Learning is needed (representative data and process).

• Less information, faster once learning is done,
• Euclidean distance on the shortened vector.
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Fusion of the correspondence functions 
(late)

• Each correspondence function generally produces a 
quantitative value that estimate a similarity,

• It is always possible to come to the case in which the values 
are between 0 and 1 and represent a relevance,

• In order to fuse the results from several functions, we may 
use :

– A weighted sum,
– A weighted product (weighted sum on the ogarithms),
– The minimum value,
– A classifier (SVM, neural network, …)

• Problem for the choice of the weights and/or for the classifier 
training.
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Computation of the relevance
• Euclidean distance, angle between vectors,
• Comparison between a query vector to all the 

vectors in the database (no pre-selection),
• “Small” number of dimensions ( < 10) : clustering 

techniques hierarchical search,
• “Medium” number of dimensions ( ~ 10+) : 

methods based on space partitioning,
• “Large” number of dimensions( >> 10 ) : no known 

method faster that a full linear scan,
• Reduction of the number of dimensions by 

Principal Component Analysis.
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Principal Component Analysis 1
• “Natural” data contain redundancies:

– Neighbor pixels’ values are correlated
– Political opinions and age of people are correlated
– Weight and size of objects are correlated
– …

• Principal Component Analysis aims at
– Identify and characterize redundancies in data
– Transform data for removing and reducing 

redundancies and possibly noise
– “Ordinary or classical” PCA operates in the context of 

linear algebra (non linear variants also exist)
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Principal Component Analysis 2
• Redundancies are identified as correlations
• Correlation is measured by covariance

– Considering a set of samples 𝑥𝑥𝜋𝜋 ,𝑦𝑦𝜋𝜋 , 𝑖𝑖 ∈ 1 …𝑁𝑁 , 
covariance is defined as:

with:

– Correlation is defined as:

𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙,𝒚𝒚 =
𝟏𝟏
𝑵𝑵
�
𝒊𝒊=𝟏𝟏

𝒊𝒊=𝑵𝑵

𝑥𝑥𝜋𝜋 − �𝒙𝒙 𝑦𝑦𝜋𝜋 − �𝒚𝒚 �𝒙𝒙 =
𝟏𝟏
𝑵𝑵
�
𝒊𝒊=𝟏𝟏

𝒊𝒊=𝑵𝑵

𝑥𝑥𝜋𝜋

𝐫𝐫 =
𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙,𝒚𝒚

𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙,𝒙𝒙 𝐜𝐜𝐜𝐜𝐜𝐜 𝒚𝒚,𝒚𝒚



95

Principal Component Analysis 3
• Examples: no correlation (normal distributions)

cov(x,x) = 2500 cov(x,x) = 2500 cov(x,x) = 625
cov(x,y) = 0 cov(x,y) = 0 cov(x,y) = 0
cov(y,y) = 2500 cov(y,y) = 225 cov(y,y) = 2500
r = 0 r = 0 r = 0
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Principal Component Analysis 4
• Examples: correlation (normal distributions)

cov(x,x) = 1800 cov(x,x) = 1800 cov(x,x) = 2500
cov(x,y) = 1350 cov(x,y) = −1350 cov(x,y) = 1470
cov(y,y) = 1800 cov(y,y) = 1800 cov(y,y) = 900
r = +0.75 r = −0.75 r = 0.98
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Principal Component Analysis 5
• Covariance matrix:

Σ = 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙,𝒙𝒙) 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙,𝒚𝒚)
𝐜𝐜𝐜𝐜𝐜𝐜(𝒚𝒚,𝒙𝒙) 𝐜𝐜𝐜𝐜𝐜𝐜(𝒚𝒚,𝒚𝒚)

• Properties:
– Σ is symmetric and positive → diagonalizable
– ∃ rotation matrix R so that R−1ΣR is diagonal
– If the rotation R is applied to the data:

• Σ becomes diagonal
• r becomes 0
• the x and y components becomes decorrelated
• redundancy is removed
• Independent components can be sorted according to their 

variance (square root of the diagonal term)
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Principal Component Analysis 6
• Rotation (and translation) of the data

cov(x,x) = 2500 cov(x,x) = 3364
cov(x,y) = 1470 cov(x,y) = 0
cov(y,y) = 900 cov(y,y) = 49
r = 0.98 r = 0
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Principal Component Analysis 7
• Generalization from sets of two-dimensional 

samples 𝑥𝑥𝜋𝜋 ,𝑦𝑦𝜋𝜋 , 𝑖𝑖 ∈ 1 …𝑁𝑁
to sets of D-dimensional samples
𝑥𝑥𝜋𝜋1, 𝑥𝑥𝜋𝜋2 … 𝑥𝑥𝜋𝜋𝐷𝐷 , 𝑖𝑖 ∈ 1 …𝑁𝑁

• Σ is a D×D symmetric and positive matrix that can 
be diagonalized as R−1ΣR

• Data can be rotated and centered accordingly into 
decorrelated components of decreasing variance

Σ𝒋𝒋𝒋𝒋 = 𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙.𝒋𝒋,𝒙𝒙.𝒋𝒋 =
𝟏𝟏
𝑵𝑵
�
𝒊𝒊=𝟏𝟏

𝒊𝒊=𝑵𝑵

𝑥𝑥𝜋𝜋𝑗𝑗 − 𝒙𝒙.𝒋𝒋 𝑥𝑥𝜋𝜋𝑘𝑘 − 𝒙𝒙.𝒋𝒋
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Principal Component Analysis 8
• With real high-dimensional sets of samples, the 

variance of the decorrelated components 
decreases very rapidly

• If correlation is high in the data, many of the last 
components have very small variances

• Dropping the components with very small variance 
does not significantly change the results

• Dropping components whose variance is smaller 
than the level of noise even improve performance

• Dropping components is a linear projection
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Principal Component Analysis 9
• PCA summary:

– Translation to center of data (removing mean vector)
– Rotation to the principal axes (from covariance matrix)
– Projection on the “big variance” axes (dropping of small 

variance components)
• PCA (almost) preserve the Euclidean distance

– Translation and rotation are isometries: they preserve 
Euclidean distance

– Projection dropping only small variance axes is close to 
an isometry: Euclidean distance is almost preserved

• Real data do not follow normal distributions but do 
exhibit significant correlations anyway
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User interface
• Classical interface for the part of the query given at the 

semantic level (e.g. text input for keywords),
• Plus possibility to define a query at the signal level:

– Query by example : one or several images or video segments, 
initially given or selected during relevance feedback,

– Library of signal elements : colors, textures,shapes (that could be 
entered as sketches),

– Possibility to define a relative importance for the various signal (or 
semantic) features available,

– Possibility to define a fusion method for the  correspondence 
functions (sum, product, min, …),

– The system can also make these choices by analysis of the 
relevance feedback,

– Link between signal and semantics.
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Search at the signal level: conclusion

• Representation by different types of descriptors 
and evaluation of relevance by various functions,

• A single type: results from poor to average,
• Several types simultaneously: results from 

average to good with possible domain adaptation
• Possibility to adjust the compromise quality -

performance - general - size of the database
• Performance limited by the "analog" (not symbolic) 

aspect of representations.
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