Multimedia Indexing and Retrieval

2. Classical machine Learning for multimedia indexing

Georges Quénot
Multimedia Information Modeling and Retrieval Group

Laboratory of Informatics of Grenoble

March 2021
Learning

• Machine learning: learning from data.

• Unsupervised learning:
 – Without human intervention,
 – Simple data,
 – Automatic class extraction (clustering).

• Supervised learning:
 – With human intervention (annotation),
 – Labeled (or annotated) data
 – Classification (predefined classes),
 – Regression (continuous values).
Supervised learning

- A machine learning technique for creating a function from training data.
- The training data consist of pairs of input objects (typically vectors) and desired outputs.
- The output of the function can be a continuous value (regression) or a class label (classification) of the input object.
- The task of the supervised learner is to predict the value of the function for any valid input object after having seen a number of training examples (i.e. pairs of input and target output).
- To achieve this, the learner has to generalize from the presented data to unseen situations in a “reasonable” way.
- The parallel task in human and animal psychology is often referred to as concept learning (in the case of classification).
- Most commonly, supervised learning generates a global model that helps mapping input objects to desired outputs.

(http://en.wikipedia.org/wiki/Supervised_learning)
Learning a target function

• Target function: \(f : X \rightarrow Y \)

\[x \rightarrow y = f(x) \]

- \(x \): input object, e.g., color image
- \(y \): desired output, e.g., class label or image tag
- \(X \): set of valid input objects
- \(Y \): set of possible output values

Set of possible color images:
\[X = \bigcup_{(w,h) \in \mathbb{N}^*} [0,1]^{w \times h \times 3} \]

Set of possible image tags:
\[Y = \{ "cat", "dog" \ldots \} \]
Learning a target function

- **Target function:** \(f : X \rightarrow Y \)
 \[x \rightarrow y = f(x) \]
 - \(x \): input object, e.g., color image
 - \(y \): desired output, e.g., class label or image tag
 - \(X \): set of valid input objects
 - \(Y \): set of possible output values

\[
\begin{align*}
 f \left(\begin{pmatrix} 0.90 \\ 0.04 \\ 0.01 \\ \ldots \end{pmatrix} \right) & \leftarrow \text{“cat”} \\
 f \left(\begin{pmatrix} 0.07 \\ 0.88 \\ 0.02 \\ \ldots \end{pmatrix} \right) & \leftarrow \text{“dog”} \\
 f \left(\begin{pmatrix} 0.02 \\ 0.03 \\ 0.86 \\ \ldots \end{pmatrix} \right) & \leftarrow \text{“car”}
\end{align*}
\]

Set of possible color images:
\[
X = \bigcup_{(w,h) \in \mathbb{N}^*} [0,1]^{w \times h \times 3}
\]

Set of possible tag scores:
\[
Y = \mathbb{R}^{\{|\text{“cat”}, \text{“dog”} \ldots \}|} = \mathbb{R}^c
\]
Learning a target function

- Target function: $f: X \rightarrow Y$
 - $x \rightarrow y = f(x)$
 - x: input object, e.g., image descriptor
 - y: desired output, e.g., class label or image tag
 - X: set of valid input objects
 - Y: set of possible output values

Set of possible image descriptors:
$$X = \mathbb{R}^d$$ (or subset of it)

Set of possible tag scores:
$$Y = \mathbb{R}^c$$

D is a predefined and fixed function from $\bigcup_{(w,h) \in \mathbb{N}^2} [0,1]^{w \times h \times 3}$ to \mathbb{R}^d
Learning from training data

• Training data: $S = (x_i, y_i)_{1 \leq i \leq I}$
 – I: number of training samples

• Learning algorithm: $L : (X \times Y)^* \rightarrow Y^X$

 $S \rightarrow f = L(S)$

 ($ (X \times Y)^* = \bigcup_{n \in \mathbb{N}} (X \times Y)^n $)

 Y^X: set of all applications from X to Y

• Regression or classification system:

 $y = f(x) = [L(S)](x) = g(S, x)$
Supervised learning

• Target function: \(f : X \rightarrow Y \)

\[x \rightarrow y = f(x) \]

- \(x \): input object (typically vector)
- \(y \): desired output (continuous value or class label)
- \(X \): set of valid input objects
- \(Y \): set of possible output values

• Training data: \(S = (x_i, y_i)(1 \leq i \leq I) \)

- \(I \): number of training samples

• Learning algorithm: \(L : (X \times Y)^* \rightarrow Y^X \)

\[S \rightarrow f = L(S) \]

• Regression or classification system:

\[y = f(x) = [L(S)](x) = g(S, x) \]
Two types of functions

• Target function: \(f : X \rightarrow Y \)
 \[x \rightarrow y = f(x) \]
 – maps input objects to desired outputs
 – often determined by a set of parameters
 – the function or its parameter are learnt from a training set

• Learning algorithm: \(L : (X \times Y)^* \rightarrow Y^X \)
 \[S \rightarrow f = L(S) \]
 – maps training sets to target functions
 – often controlled by a set of hyper-parameters
 – hyper-parameters may be tuned on a validation set
Model based supervised learning

- Two functions, “train” and “predict”, cooperating via a Model

- General regression or classification system:
 \[y = [L(S)](x) = g(S,x) \]

- Building of a model (train):
 \[M = T(S) \]

- Prediction using a model (predict):
 \[y = [L(S)](x) = g(S,x) = P(M,x) = P(T(S),x) \]
Supervised learning
Classification problem

Training samples
\[S = (x_i, y_i)_{(1 \leq i \leq I)} \]

Testing samples
\[x \]

\[M = T(S) = T((x_i, y_i)_{(1 \leq i \leq I)}) \]

Predicted classes
\[y = P(M, x) = P(T(S), x) \]
Classification methods

- Gaussian Mixture Models
- Hidden Markov Models
- Decision trees
- Genetic algorithms
- Artificial neural networks
- K-nearest neighbor
- Linear discriminant analysis
- Support vector machines
- Minimum message length
- And many more.
k nearest neighbors (k-NN)

- No training: $M = T(S) = S \quad (T = \text{identity})$
- Compute the distances from the unknown sample x to all the training samples x_i,
- Select the k closest x_i,
- Compute the class of x from the classes of the closest x_i’s:
 - $k = 1$: the class of x is the class of the closest x_i,
 - k is odd and there are only two classes : majority vote.
- k-NN is a non linear classifier and can easily model classes with very irregular shapes.
k nearest neighbors (k-NN)

- 1-NN is a simple and quite often excellent classifier, it is often chosen as a baseline for comparison between systems,
- 3-NN is more robust against isolated outliers,
- Improvement: weight class values according to the (inverse) distance to the query point
- May be slow for classification because of the need to compute the distances with all the training samples
- However a single NN search may be performed for many classifications at once (multi-label problem)
- May be used for indexing (off-line) or for search (on-line, “similarity search”)
Computation of distance for k-NN

- Euclidian distance, angle between vectors,
- Comparison between a query vector to all the vectors in the database (no pre-selection),
- “Small” number of dimensions (< 10) : clustering techniques, hierarchical search,
- “Medium” number of dimensions (~ 10+) : methods based on space partitioning,
- “Large” number of dimensions(>> 10) : no known method faster that a full linear scan,
- Reduction of the number of dimensions by Principal Component Analysis.
- Approximate Nearest Neighbors: LSH
Locality Sensitive Hashing (LSH)

- Hashing: store many data samples into a table of fixed length; data placed into “buckets”
- “Regular” Hashing: avoid collision for faster access, polynomial and multiples XOR functions; any type of data
- Locality preserving hashing: favor collisions of “close” samples into the same buckets; data from highly dimensional Euclidean space, multiple projection functions
LSH: Multiple projection functions

- Set of random directions
- Projection on the axes → one component per direction
- Split values on axes according to a data distribution (two, four, eight … intervals)
- One or more bits per direction (generally one)
- Concatenation for producing the bucket index
- Multiple projections: matrix vector multiplication
LSH: Use of multiple tables

• Build many LSH tables
• For each table, select all the test samples that fall in the same bucket than the query sample
• Compute the Euclidean distance only for those samples
• Sort the test samples according to the Euclidean distances
• Euclidean distances are not approximate but some samples close to the query may not fall in the selected buckets
• The size and number of tables must be chosen so that enough and not too many samples are found for a query
LSH: Use of hamming distance

• Build binary codes (bucket index) as for one LSH table
• Hamming distance: number of bit locations in which the binary values differ: bitwise XOR followed by a count on 1 bits; modern processors have this as a single instruction
• Compute the Hamming distance between the query and all test samples: much faster than Euclidean distance
• Select samples with closest Hamming distance
• Compute the Euclidean distance only for those samples
• Similar to multiple tables from there
Support Vector Machines (SVM)

- Empirical risk minimization
- Linear classifier with maximum margin

The “kernel trick” permits non linear classification also with maximum margin and minimum empirical risk
SVM linear classification

• Maximum-margin hyperplanes for a SVM trained with samples from two classes.

• Samples along the hyperplanes are called the support vectors.

• The separated hyperplane is defined by:
 \[w^T.x - b = 0\]

• The margin is \(2/|w|\)
SVM linear classification

• If the data is linearly separable:
 if \(y_i = -1 \) : \(w^T x_i - b \leq -1 \)
 if \(y_i = +1 \) : \(w^T x_i - b \geq 1 \)

• This can be rewritten as:
 \[y_i (w^T x_i - b) \geq 1 \]

• SVM problem primal form:
 Minimize: \[\frac{1}{2} \|w\|^2 \]
 subject to: \[y_i (w^T x_i - b) \geq 1, \quad 1 \leq i \leq n. \]

• SVM problem dual form:
 \[w = \sum_{i=1}^{n} \alpha_i y_i x_i \]
 maximize: \[\sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j \]
 subject to \[\alpha_i \geq 0 \]

\(\alpha_i \)'s are non zero only for the support vectors.
SVM linear classification

• Soft margin, primal form:

 \[y_i(w^T x_i - b) \geq 1 \quad \rightarrow \quad y_i(w^T x_i - b) \geq 1 - \xi_i \]

 \[\min \frac{1}{2} \|w\|^2 \quad \rightarrow \quad \min \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \right) \]

• Dual form:

 \[\alpha_i \geq 0 \quad \rightarrow \quad 0 \leq \alpha_i \leq C \]

• Allows for “misclassified” samples.
SVM non-linear classification

• Kernel trick: projection on a cone (2D → 3D):
 \[(x, y) \rightarrow \Phi(x, y) = (x, y, \sqrt{x^2 + y^2})\]

No linear separation in original space

Linear separation in \(\text{im}(\Phi)\) space
SVM non-linear classification

- Decision function:
 \[f(x) = \langle w \mid x \rangle - b = \left(\sum_{i=1}^{n} \alpha_i y_i x_i \right) - b = \left(\sum_{i=1}^{n} \alpha_i y_i \langle x_i \mid x \rangle \right) - b \]

- Quadratic form maximization:
 \[\sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i \mid x_j \rangle \]

- Kernel trick: \[\langle x_i \mid x_j \rangle \rightarrow \langle \Phi(x_i) \mid \Phi(x_j) \rangle = K(x_i, x_j) \]

- \(\Phi \): possibly non-linear function, does not need to be computed, implicitly defined via the kernel \(K \) definition, linear separation in the \(\text{im}(\Phi) \) space, may be non-linear in the original space.
SVM non-linear classification

• Mercer condition: \(K(x_i,x_j) \) must be definite positive.

• Common kernels:

 – Polynomial (homogeneous): \(K(x, y) = (x \cdot y)^d \)

 – Polynomial (inhomogeneous): \(K(x, y) = (x \cdot y + 1)^d \)

 – Radial Basis Function: \(K(x, y) = \exp \left(-\frac{\|x - y\|^2}{2\sigma^2} \right) \)

 – Sigmoid: \(K(x, y) = \tanh (\kappa x \cdot y + c) \), for some (not every) \(\kappa > 0 \) and \(c < 0 \)
SVM summary

• Maximization of the margin for linearly separable data

• Use of a dual form for finding support vectors and coefficients (convex optimization)

• Use of soft margin for “almost” linearly separable data

• Use of the “kernel trick” for non-linearly separable data

• Most commonly used kernel: $K(x, y) = e^{-\gamma \|x - y\|^2}$ → $f(x) = \sum_{i=1}^{I} \alpha_i y_i e^{-\gamma \|x - x_i\|^2} + b$: weighted sum of Gaussians centered on the support samples (vectors)
Hyper-parameter tuning

• Parameters:
 – Parameters of the model learnt from training data
 – e.g. values of the support vectors (x_i) and Lagrange coefficients (α_i) in SVMs

• “Hyper”-parameters:
 – Parameters that controls how the model (and “standard” parameters) are learnt
 – e.g. soft margin coefficient (C) in SVMs and the scale parameter in the RBF version (γ)
 – Possibly also class weights
 – Controls “how well” the classification algorithm generalizes from training data, especially the under fit versus over fit compromise
Hyper-parameter tuning, validation set

- A dataset used for training cannot be used for evaluation (over-fitting)

- Standard method: use different datasets for training and performance evaluation, each with annotated samples.

- Tuning of hyper-parameters on the test set is bad (over-fitting again)

- Good solution: use three datasets: train, val and test, all with annotated samples

- Train and evaluate several hyper-parameter values between train and val and then apply to test.
Hyper-parameter tuning, validation set

- Parameter tuning: selection of the optimal hyper-parameter combination by training on train and evaluating on val.

 ![Diagram](Train → Val → Test)

- Actual evaluation: keep the optimal hyper-parameter values, train on train+val and evaluate on test.

 ![Diagram](Train → Val → Test)
No validation set: split the training set

- Split into two equal parts, use first part as train and second part for validation ("one-fold" cross-validation)

```
<table>
<thead>
<tr>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```

- Two-fold cross-validation

```
<table>
<thead>
<tr>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```
Two-fold cross-validation

- Use two parts alternatively for training and validation

<table>
<thead>
<tr>
<th>Train</th>
<th>Val</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>Train</td>
<td>Test</td>
</tr>
</tbody>
</table>

- The whole development set is used both for training and for evaluation during hyper-parameter tuning

- Tuning is done on MAP (hyper-parameters)
 - Either average the MAP on the two validations
 - Or compute a global MAP on the concatenated scores

- Training is done on half of the development set each time
N-fold cross-validation

- Use N parts of 1/N of the development set alternatively for validation and the complement ((N-1)/N) for training.

- The whole development set is used both for training and for evaluation during hyper-parameter tuning.

- Training is done on (N-1)/N of the development set each time, the greater N, the better.
Probabilized output

• SVM scores possibly ranges from $-\infty$ to $+\infty$
• Probabilities are expected to range from 0 to 1
• Sigmoid transform: $p(\text{score}) = 1/(1+e^{(A*\text{score}+B)})$
• Additional hint: among the samples within a small interval around p, a fraction of about p would have positive labels
• Platt’s (1999) method: learn A and B by cross-validation to optimally satisfy the above hint
• Probability normalized outputs better for late fusion
• Linear SVM + sigmoid normalization \sim logistic regression