
Mathematics reminders for deep learning (and more)
Part 1: Linear Algebra

Georges Quénot

Univ. Grenoble Alpes, CNRS, Grenoble-INP, LIG, F-38000 Grenoble France

February, 2020

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 1 / 20



Algebra - Vector Space and Linear Applications

A Vector Space (VS) V of dimension n over a Field F (R or C) is isomorphic to F n (via a
bijective linear application)

Scalar : element of F

Vector : element of V (or of F n)

Addition of vectors + : V × V → V : (x , y)→ x + y

Multiplication of a vector by a scalar . : F × V → V : (a, x)→ a.x
The dot may be omitted (a.x ≡ ax)

Linear Map (VS → VS) or Linear Form (VS → F ) f :

∀(x , y) ∈ V × V : f (x + x) = f (x) + f (y)
∀(a, x) ∈ F × V : f (a.x) = a.f (x)
the source and target vector spaces may be different

Also: vector spaces of infinite dimensions.

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 2 / 20



Algebra - Row and column vector and form representations

Representations are relative to a coordinate system or basis in a “regular” vector space

Column (“regular”) vector representation: x =


x1

x2

...
xn

 =
(
x1 x2 . . . xn

)T

Row (linear form) covector representation: y =
(
y1 y2 . . . yn

)
=


y1

y2

...
yn


T

The transpose operator (T is a superscript, not an exponent) swaps rows and columns

Application of a linear form to a regular vector: fy (x) =
k=n∑
k=1

ykxk = y .x = yx = f ∗x (y)

Linear forms (covectors) and “regular” vectors belong to dual vector spaces

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 3 / 20



Algebra - Linear maps matrix representations

Matrix as a linear map representation : a =

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n


in the absence of ambiguity, commas may be removed: ai ,j ≡ aij

m : number of rows = dimension of the target vector space

n : number of columns = dimension of the source vector space

Particular cases (indexes fixed to 1 may be dropped):

n = 1 : a vector is equivalent to a matrix that has a single column (column vector)
m = 1 : a covector is equivalent to a matrix that has a single row (row vector)
m = n = 1 : a scalar is equivalent to a matrix that has a single element

The transpose of an m × n matrix is an n ×m matrix: (aij)
T = (aji )

The transpose of a row vector is a column vector and vice versa

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 4 / 20



Algebra - Matrix multiplication (“dot” or “inner” product)

Matrices can be multiplied if and only if the number of columns in the left matrix is equal to the
number of row in the right matrix (n here)

The product of an m × n matrix a by an n × p matrix b is an m × p matrix ca11 . . . a1n

...
. . .

...
am1 . . . amn


b11 . . . b1p

...
. . .

...
bn1 . . . bnp

 =

c11 . . . c1p

...
. . .

...
cm1 . . . cmp



with: cij =
k=n∑
k=1

aikbkj =
(
ai1 . . . ain

)b1j

...
bnj

 = ai.b.j for all 1 ≤ i ≤ m and 1 ≤ j ≤ p

The cij (scalar) element of c is the “dot” or “inner” product of the i th row ai.(covector) of a by
the jth column b.j (vector) of b

The matrix product is associative but not commutative

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 5 / 20



Algebra - Matrix multiplication: particular cases

p = 1 : product of a matrix with a column vector on the right → column vector:a11 . . . a1n
...

. . .
...

am1 . . . amn


b1

...
bn

 =

c1
...
cm

 with: ci =
k=n∑
k=1

aikbk

m = 1 : product of a matrix with a row vector on the left → row vector:

(
a1 . . . an

) b1 . . . bp
...

. . .
...

bn1 . . . bnp

 =
(
c1 . . . cp

)
with: cj =

k=n∑
k=1

akbkj

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 6 / 20



Algebra - Matrix multiplication: particular cases

p = m = 1 : product of a raw vector with a column vector → scalar:

(
a1 . . . an

)b1
...
bn

 =
(
c
)

with: c =
k=n∑
k=1

akbk (vector dimensions must be the same)

n = 1 : product of a column vector with a raw vector → matrix:a1
...
am

(b1 . . . bp
)

=

c11 . . . c1p
...

. . .
...

cm1 . . . cmp

 with: cij = aibj (m and p may be different)

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 7 / 20



Algebra - Multidimensional arrays

A d-dimensional array is a set of numbers arranged on a regular d-dimensional grid

The number d of axes of a multidimensional array must not be confused with the number
of dimensions of a vector, e.g., e vector of n elements may be stored in a single axis
(1-dimensional) array of n dimensions

For instance an n1 × n2 × n3 3-dimensional (3D) array has three axes whose respective
dimensionality are n1, n2 and n3

The various axes can be typed (“row”, “column”, “horizontal”, “vertical”, “feature”)

The order of the axes matters

The transpose operation is a special case of axes permutation

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 8 / 20



Algebra - Tensors

Tensors are d-dimensional arrays with two types of indexes (one index per axis):

covariant or “column” or “vector” or “regular” type
contravariant or “row” or “linear form” or “dual” type

There are in principle different types of tensors with the same number of axes:

A column vector is a 1-dimensional tensor with one contravariant index
(components in a column vectors correspond to different rows and vice-versa)
A row (co)vector is a 1-dimensional tensor with one covariant (column) index
A matrix is a 2-dimensional tensor with one contravariant index one covariant index
There may be 2-dimensional tensors with two contravariant indexes or with two covariant
indexes

We don’t care much about that distinction, except for dot product operations

In deep learning, we only consider tensors as d-dimensional arrays but the order of axes, as well as
how they are matched during product operations does matter

We also consider other types of indexes for axes not subject to dot product operations

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 9 / 20



Algebra - Tensors: outer (or dyadic) product

Example:
(
aijk
)
⊗
(
blm
)

=
(
cijklm

)
with:

cijklm = aijkblm for all valid i , j , k , l and m(
aijk
)

denotes an I × J × K 3D tensor(
blm
)

denotes an L×M 2D tensor(
cijklm

)
denotes an I × J × K × L×M × K 5D tensor

The outer product of tensors can be done with tensors of any type and any axis lengths

The number, order, type and length of axes are conserved during the outer product

The outer product is associative but not commutative

The covariant / contravariant distinction is important only for axes subject to dot product
operations (i.e. not for outer, Hadamard and convolution products)

The dot product “contracts” dimensions of opposite types (removes two indexes)

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 10 / 20



Algebra - Tensors: product with (dot-type) contraction

The left tensor a has da axes, one of which is of a row-type;
it can be seen as a tensor a∗ with da − 1 axes whose elements are row (co)vectors

The right tensor b has db axes, one of which is of a column-type;
it can be seen as a tensor b∗ with db − 1 axes whose elements are column vectors

the product tensor c = ab is a tensor with da + db − 2 axes whose elements are the dot
products of the row elements of a∗ and the column elements of b∗

da = 2, db = 2 : standard matrix-matrix product

da = 2, db = 1 : standard matrix-vector product

da = 1, db = 2 : standard covector-matrix product

da = 1, db = 1 : standard covector-vector product

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 11 / 20



Algebra - Tensors: product with (dot-type) contraction

da = 3, db = 2 : the product of a “stack of matrices” by a standard matrix is a stack of
matrices which is the stack of the matrix-matrix products

(Image from Pytorch tutorial)

Any axis from the left tensor can be contracted with any axis of the right tensor as long
as they have the same length and are of opposite types (if they are typed)

Non-contracted axes are combined as in an outer product (a∗ ⊗ b∗)

The product with contraction can be decomposed into an outer product followed by trace
operation (sum over “diagonal”) on axes with same lengths and opposite types

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 12 / 20



Implementation - numpy.array, torch.tensor, C arrays ...

d-dimensional arrays:

d = 0 : scalar, single real number (unused as an array)
d = 1 : vector or covector, one-dimensional array of real numbers
d = 2 : matrix, two-dimensional array of real numbers
d > 2 : tensor, d-dimensional array of real numbers

numpy arrays and torch tensors may have any number of axes, some of which may be of
length 1, for example: 3× 3 (2D), 2× 3× 4 (3D), 4× 4× 4× 4× 4 (5D), 2 (1D), 2× 1
(2D with one of length 1), 1× 2 (2D with one of length 1) ...

No difference between column vectors and row (co)vectors; both are usually coded in 1D
arrays, though these can also be explicitly coded in 1× n and n × 1 arrays

Operation between d-dimensional arrays are specified with the type of operation (inner,
outer, Hadamard, convolution ...) and with the dimension axes (indexes) on which they
apply and/or with the order of the operands (see numpy/scipy and torch documentation)

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 13 / 20



1D convolution

A finite vector a = (ak)(1≤k≤n) is a function f : [1, n]→ R : k → f (k) = ak

An infinite vector a = (ak)(k∈Z) is a function f : Z→ R : k → f (k) = ak

An infinite vector a = (ak)(k∈Z) is square-bounded if
∑
k∈Z

a2
k converges

A convolution a ∗ b is defined between square-bounded infinite vectors a and b
(or f ∗ g between square-bounded functions from Z to R f and g) as:

(a ∗ b)i =
∑
k∈Z

ai−kbk or: (f ∗ g)(i) =
∑
k∈Z

f (i − k)g(k)

The convolution of square-bounded infinite vectors (or functions) is square-bounded

The convolution operation is actually symmetric and commutative

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 14 / 20



1D convolution

The convolution of a signal a by a kernel (or a filter) b at index i is a linear combination
of the neighbors of ai (possibly including ai itself) weighted by the elements of b

As these do not depend upon i , the result is invariant by translation as i changes
(“sliding window” constant linear combination)

Examples : FIR filter, local averaging filter Gaussian filter, derivatives ...

The signal/kernel distinction is arbitrary, the convolution operation is symmetric.

In practice, finite-support (where they are non-zero) vectors are used as kernels

The sliding window operation is also generally applied on finite vectors
→ side (border) effects, dealt with by padding or cropping

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 15 / 20



2D convolution

An infinite 2D array a = (akl)((k,l)∈Z2) is a function f : Z2 → R : (k , l)→ f (k , l) = akl

An infinite 2D array a = (akl)(k∈Z) is square-bounded if
∑

(k,l)∈Z2

a2
kl converges

A convolution a ∗ b is defined between square-bounded infinite 2D arrays a and b
(or f ∗ g between square-bounded functions from Z2 to R f and g) as:

(a ∗ b)ij =
∑

(k,l)∈Z2

ai−k,j−lbkl or: (f ∗ g)(i , j) =
∑

(k,l)∈Z2

f (i − k , j − l)g(k , l)

The convolution of square-bounded infinite vectors (or functions) is square-bounded

The 2D convolution operation is actually symmetric and commutative

a and b can respectively (and arbitrarily) be considered as a 2D signal and a 2D kernel

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 16 / 20



Summary: 4 types of vector products (all generalizable to tensors)

Vectors of same size:

inner or scalar or dot product: (ak).(bk) =
k=n∑
k=1

akbk = (c), scalar result

element-wise or Hadamard product: (ak) ◦ (bk) = (akbk) = (ck), vector result

Vectors of (possibly) different sizes:

outer or dyadic product: (ai )⊗ (bj) = (aibj) = (cij), matrix result

convolution product: (ai ) ∗ (bk) =
∑
bk 6=0

ai−kbk = (ci ), vector result

(bk) can be seen as a kernel, possible “side effects” to consider

Generalization by adding axes (examples above)

Generalization by repeating and/or combining the operations (examples to follow)

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 17 / 20



CNN layer convolution product: translation invariant linear operator

CNN layers input and outputs: 3D tensors as stacks of “feature maps”

Two dimensions following to the image topology (i and j indices)

A third “feature” dimension (k and l indices respectively for input and output)

Sizes of If × Iw × Ih and Of × Ow × Oh for the input and output tensors respectively

CNN kernel: 4D tensor as stack of stacks of 2D convolution kernels

Size of Of × If × (2Kw + 1)× (2Kh + 1) for the kernel tensor

CNN layer product (∗NN): generalized combination (not just a sequence) of:

A convolution within the image plane (m and n indices, translation invariant)

A matrix-vector operation in the feature dimension (k and l indices, “all to all”)

(Ol ,i ,j) = (Kl ,k,m,n) ∗NN (Ik,i ,j) =

k=If∑
k=1

m=+Kw∑
m=−Kw

n=+Kh∑
n=−Kh

Kl ,k,m,n Ik,i−m,j−n

for all 1 ≤ l ≤ Of , 1 ≤ i ≤ Ow and 1 ≤ j ≤ Oh (possible side effects in the image plane)

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 18 / 20



CNN layer convolution product: translation invariant linear operator

Image 
height

Image 
width

Feature 
maps

Set of values 
associated to 
a single grid 
location

Each map point in the output is connected to all maps points of a fixed size
neighborhood in the input

Kernel weights between maps are the same at all grid locations so that the computations
are invariant by translation in the image plane

One stack (over input feature maps) of independent 2D convolution kernels per output
feature map → one 3D kernel per output feature map → one 4D global kernel

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 19 / 20



CNN layer convolution product, batch processing

CNN layers input and outputs: 4D tensors as sequences of 3D tensors

A fourth “batch” dimension (b index for both input and output)

Sizes of B × If × Iw × Ih and B ×Of ×Ow ×Oh for the input and output tensors respectively

Independent and identical “per image” processing

CNN kernel: 4D tensor as stack of stacks of 2D convolution kernels (no change)

Size of Of × If × (2Kw + 1)× (2Kh + 1) for the kernel tensor

(Ob,l ,i ,j) = (Kl ,k,m,n) ∗NN (Ib,k,i ,j) =

k=If∑
k=1

m=+Kw∑
m=−Kw

n=+Kh∑
n=−Kh

Kl ,k,m,n Ib,k,i−m,j−n

for all 1 ≤ b ≤ B, 1 ≤ l ≤ Of , 1 ≤ i ≤ Ow and 1 ≤ j ≤ Oh

The use of 4D data tensors enables very efficient parallel implementations on GPUs

2D signal considered here but generalizable to nD signal processing (1D, 3D, 4D ...)

G. Quénot (CNRS-LIG-MRIM) Mathematics reminders − Part 1 February, 2020 20 / 20


	Algebra

